
Introduction to the Stat-JR software package | William Browne 

 

Hello, my name is Bill Browne, and I am a professor of statistics, and co-

director of the centre for multilevel modelling, which is based at the 

University of Bristol. In the centre we do research into statistical 

methodology and statistical software, with applications in the social 

sciences. Today I'm going to talk to you about one of our newer statistical 

software packages, Stat-JR which was developed in grants funded by the 

ESRC and in part by the National Centre for Research methods (NCRM). 

This work is a team effort and many colleagues at the centre and at the 

University of Southampton have contributed to Stat-JR.  

 

So, what is Stat-JR? Well firstly, it is a statistical software package that we 

have been developing for nearly a decade at the Centre for multilevel 

modelling. It is pronounced, as you have gathered, 'stature', and was 

named in tribute to our former colleague Jon Rasbash, who was the main 

programmer of our other main software package MLwiN. Jon came up with 

the initial ideas behind Stat-JR and it is meant to appeal to users of all 

abilities, from novices right through to experts, who might then develop 

their own functionality in the package. It is written in Python and has its own 

estimation engine which we call eStat. This uses Monte Carlo Markov chain 

methods. But the package also allows interoperability with other common 

statistical packages, and these features will be covered in this introductory 

lecture. For those of you who wish to also learn about Stat-JR’s statistical 

analysis assistants features or its ability to create SPSS based training 

materials, there will be other videos that cover these topics.  

 

So, StatJR was designed as a set of components that interlink to create a 

complete software package. The system has its own algebraic processor 

which can be used to construct algorithms for model fitting. As you will see 

in this diagram behind me, there are templates, of which we will say more 

later, that take user input and use it to specify a statistical model. This 

model is then sent through an algebra system and programming code is 

produced. This code can be combined with data to execute a model and/or 

to perform simulations with simulated data. Results are produced which 

can then be presented in many different ways.  

 

So, StatJR works via a series of templates. These can be user written, 

although we supply many with the software package, and are similar to the 

concept of packages in the software package, 'R,' say. Some templates are 

for fitting specific statistical model families, and these have a very standard 



form. They contain an inputs method. This is used for specifying the inputs 

that are required for that model, a model method that produces model 

code, and optionally a LaTeX method. This can be used to produce code 

that outputs the model in LaTeX format. For more complex templates there 

are other functions. Here behind me now is an example of a template code 

for a template that fits a regression model. This is shown in part to show 

that the Python code is really quite short, and you can clearly see the input, 

model, and LaTeX methods. The input method has two inputs 

corresponding to the response and the predictor in the regression template, 

and they are given as Y and X. These are required and in brackets you will 

see text that will be displayed when these inputs are asked for by the 

system. The input method also contains parameters that are needed for the 

model to run.  

 

So, let's look at running this template in practice. Behind me now you will 

see a screen shot of Stat-JR. So Stat-JR runs in a web browser but it's 

hosted locally on your own machine. The font is small, so we can blow it up 

a bit. You will see here that the input text appears as in the template code 

for the first two inputs. There are then a series of other methodological 

inputs such as the number of iterations to run. These are needed for the 

MCMC estimation engine but they all have default set for them. Clicking on 

the next button at the bottom of the screen after filling in the inputs will 

mean the template creates several objects that can be viewed on the 

screen below. This can be seen below where the inputs are. The objects 

are accessed via the pulldown list to the left, and here we see the 

regression equation created in LaTeX format. Let's blow this one up a bit 

so we can see it clearly. Here we see a regression based on the user 

inputs. Note that we use the term 'cons' to represent a column of ones that 

represents an intercept parameter, and the first two lines represent a 

standard linear regression. As we are using MCMC estimation the 

remaining lines specify prior distributions for the model parameters. As 

noted we use a piece of software called MATHJAX, which allows the 

underlying LaTeX code to be copied. If we return to the pulldown list, we 

can choose another object. Here we see the model code that is used by the 

algebra system. We can also pop out objects by clicking on the pop out 

button and then they will appear in separate tabs in your web browser. So, 

several objects can be viewed at once. Let's look at this object in more 

detail. Here we see the model code that the template has constructed. This 

code is written in a language originally developed by the team of software 

developers who developed the WinBUGS package. It has slightly small 

differences like the length function that you see here, and here the code 



specifies a regression model along with some diffuse prior distributions. 

The code produced is then fed into StatJR’s algebra system, which we see 

on the slide following. Here we see one of the steps that the algebra 

system performs. For this model we will be using the MCMC method called 

Gibbs sampling, and the Gibbs sampling algorithm involves finding the 

conditional posterior distribution for each parameter in turn and these form 

steps in an overall algorithm. Often this is done by forming the conditional 

posterior distribution and then matching it to a known distributional form. In 

the example behind me we are looking at the intercept parameter beta-

zero, and we're matching it to a known distribution, the normal distribution. 

This means by showing all of the steps, expert users can check that the 

system is working correctly. If we move on here, on this screen you will see 

the series of steps one for each parameter. So, this gives us a summary of 

the overall algorithm. In practice the algebra system works independently of 

any data. It just takes the model code it has been given. So, as you see 

here where we show you the final step that is used for this parameter, the 

step is defined in terms of the names of the data only. When StatJR has 

access to the data then we can see in the second line that we see here that 

the code simplifies a lot, where we can substitute constants in, and the data 

in, for the various variables. StatJR will then construct C++ code and fit the 

model. If we look now we see another object which is the actual C++ code 

for fitting the model, and a software developer might take this away and 

modify it if for example they've created their own algorithm that they are 

interested in fitting. We can zoom in again because that was quite small 

font and look at the actual code as we've replicated here. And you'll see 

that the code looks fairly similar to the algebra steps. You can match line 

for line. Of course, many of our users, in particular than novice users, will 

not want to look at this code at all. But instead they can simply press the 

Run button and run the model. And if we do this StatJR will compile the 

C++ code, which all happens in the background, fit the model, and return 

the results as we will see in a minute.  

 

Here we see for each parameter, the results that we get out of StatJR. We 

have posterior mean estimates because we're running MCMC with 

corresponding posterior standard deviations which correspond to the 

standard errors in a usual procedure, and effective sample sizes. These 

can be used to evaluate how well the MCMC algorithm has been 

performing. In fact, the effective sample sizes represent how many effective 

independent iterations of our MCMC algorithm have been run. And here, as 

we see, all of these effective sample sizes are very large, over 5,000, which 

is good. There is also the DIC, the deviance information criterion 



diagnostic, and this can be used with MCMC to compare different models.  

 

Following on we can also look at MCMC diagnostic plots and these can be 

used to further investigate wherever the method has been run for long 

enough. In Stat-R the eStat engine that we have developed runs multiple 

chains in parallel. And so here we see in the top left, three chains and 

different colours. A red chain, a green chain, and a blue chain. As well, in 

the top right, we have multiple density plots. Again, one for each chain 

each colour. If we move on we have in the middle row of this diagram, time 

series Diagnostics and these are used to again assess how well the MCMC 

method is doing, while at the bottom we have two plots, a plot that gives 

the Monte Carlo standard error for different lengths of the chain. So if you 

discover your Diagnostics aren't very good, this will tell you how much 

further you might have to run your chain for. In the bottom right, we have a 

multiple chain convergence diagnostic. the Gelman-Rubin diagnostic.  

 

A feature of StatJR is that it can run models using other software packages. 

For example, given that the templates already create model code that looks 

a bit like WinBUGS code, it is fairly straight- forward to allow StatJR to 

interoperate with WinBUGS. Here we see inputs to a second template 

which we've called Regression 2, and this is the same as the template 

Regression 1, but in addition we've added one extra input which asks what 

estimation engine you want to use. Here you will have a choice of many 

different software packages all of which can fit a regression model. We 

have selected WinBUGS and interoperability will work in the following way. 

Each template in the code has additional code to explain how to fit the 

model in the other packages. Although for WinBUGS, as the code is so 

similar to the model code we have already seen, and indeed for the other 

packages OpenBUGS and JAGS, the StatJR system will automatically fit 

these models as they share this same language. Here we see in amongst 

the objects created when WinBUGS has been selected we see a script file, 

and this file contains the commands that were required by the WinBUGS 

package to fit the model. There are other files that that StatJR will create 

for use with WinBUGS. These will identify the actual data in the correct 

format for WinBUGS, the initial values, and the model itself. Then when we 

click run WinBUGS will fire up in the background, fit the model, and return 

the estimates as we saw with the eStat engine. So, for a novice user you 

will see no difference. You will just run a different package in the 

background and get a different set of estimates. Interoperability is also 

available with packages like R. In R there are options, at least for 

regression models, to use both the GLM function and the MCMCglmm 



function. Here we have chosen the GLM function and you will see the R 

script below in the objects list. This is the series of commands that R 

requires to run and fit a regression model. StatJR will also create the data 

in the right format for R, and again we'll call R in the background and come 

back with the results. So, if we look at this second diagram, when we use 

interoperability with StatJR, StatJR requires that the package to be 

interoperated with is installed on your machine, it's not magic, and that the 

correct path to find it is added to the inputs in the settings file. It will then 

run the package in the background and return the outputs. Often these 

outputs are simply data files which StatJR will then post process. But as 

you can see in this example figures can be brought back from other 

packages. Here for example we see a plot from R which shows the 

residuals from the regression model against the fitted values.  

 

Finally, StatJR is written in Python, and so can exploit Python's own 

functions including via Pythons Matplotlib package, some of the graphing 

functions that have been developed originally in the MATLAB package. 

Here we're going to use another template that comes with StatJR and 

we've called this template XYplot, and it is used to create scatter plots of 

two variables. So, in the example we see here I have chosen a test data 

set, and I've chosen two variables, normalized exam, and standardized 

LRT, and you will see the scatter plot of these two variables appears as an 

output in the browser window.  

 

Hopefully in that whistle-stop tour of StatJR you have learnt a little bit of its 

capabilities. If you want to know more then look out for the other videos or 

visit the centre website at the web link provided on this final slide. Thank 

you very much for listening. 


